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abstract

A control strategy for real-time collision ;_voidance of a mobile robot in an environment

containing moving obstacles is proposed. A dynamic model of the robot, the constraints and

assumptions are presented. Objects, including the robot, are modelled as convex polyhedra.

Collision avoidance is guaranteed if the minimum distance between the robot and the objects

is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main

idea is to change the velocity along the nominal trajectory so that collisions are avoided.

Furthermore, consistency with the nominM plan is desirable. The process is formulated as

an optimization problem mid a. close to ot_timal solution is obtained. Simulation results

verify the value of the proposed strategy.

1 Introduction

The trend to install several autonolnous machines within the same environment raises ques-

tions about their interaction with lheir hum;,,n "'associates", and between themselves. Nat-

urally, the issue of safety and efficient cooperation surfaces. Although a potential solution

to this problem is priority assignement by ;_ centrM control unit, this would contradict the

obvious design specification regarding maxin_at "autonomy".

Therefore, a solution where a central conrail unit assigns only simple tasks specified by

qualitative requirements, leaving the lower level decision making to be performed within

the conceptual (or physical) limits of an autonomous machine, is desirable.

A typical case is this of an industrial floor (fig 1) and a mobile robot that was assigned

the simple task to go, tor example, from _m initial configuration with orientation OA at the

cartesian position .4 to a final orien lation 0B, and position B, within some time T, satisfying

certain constraints _tnd optimizing over cerlain criteria.

A nominal motion plan is determined l_ased on the apriori knowledge of the envi-

ronment. This knowledge is not guaranteed lo be accurate because changes happen and

unexpected objects enter the workspace, ll" these disrupt the motion of the robot, then

the nominal nlotion plan must be modified. For example, in the setup of fig. 1 a collision
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is likely to happen when the moving obstacle is crossing the path of the mobile robot, at

the neighborhood of point C.

The problem of treating moving objects has been stated as early as 1984 [FH84] and

usually ad hoc solutions were given [Le89] [Tou86]. Reif and Sharir [RS85] gave an algo-

rithmic solution to the problem but they were restricted to some categories of shapes of

objects. Additionally, their approach is not suitable for an on-Une implementation that is

actually necessary in a dynamic environment. On the other hand, Kant and Zucker [KZ84],

[KZ86], [KZ88], used the decomposition of the motion planning problem to the find-path,

and move-along-path problems, they propose that the avoidance of moving obstacles can be

done by adjusting the motion along the geometric path. The same approach was adopted

in [WJ88], and recently in [GE90]. The basic idea of this approach is utilized in this work.

Our scheme is more general and complete in the sense that the dynamic model of the robot

is used, the objects are modelled as convex polyhedra and, in addition to collision avoid-

ance, time consistency with the nominal plan is sought. Lately search based approaches for

solving the above problem have also been presented in [FS90],[SLG90].

The unexpected objects must be detected, classified as disrupting or not, and if neces-

sary, avoided. The first two issues have been presented in detail in the paper [KS90], while

the main issue of this paper, is the avoidance of the special class of unpredictable moving

objects that disrupt the motion of the mobile robot during only a finite period of time.

The basic idea of the proposed approach is the parametrization of the trajectory of

the nominal motion plan. This is done by describing the shape and the orientation of the

trajectory of the mobile robot by a function r(s) = [p:_(s) p_(s) 8(s)] T where s is a scalar

variable in the interval [0, a/]. The algorithm presented in this paper determines s(t) so that

collision avoidance is achieved. By introducing such a parametrization, the dimensionality

of the problem becomes smaller, since by moving along r(s) collision avoidance is guaranteed

in the static environment.

In section 2 the problem, the assumptions and the constraints are stated. In section 3

the proposed strategy is presented. The numerical issues of the algorithms are discussed in

section 4. Finally in section 5 simulation results are presented and discussed.

2 Problem Statement

We assume that a mobile robot is following a nominal plan (computed off-fine) that is

composed of a description r(s) of the cartesian trajectory, and the motion function s,_(t),

t E [0, T]. At every instant the t the position and orientation of the robot is given bv

r(t) = r(s,_(t)). If at a moment (t = to), a collision is predicted to happen at tc E [to, T]

(see [KS90]) a new motion function s(t), t E [to, t/I, different from s,_(t) should be found to

guarantee collision avoidance and a final time (task execution time) t/ , as close as possible

to the time T of the nominal plan.

An investigation of the dynamics of the mobile robot, the solid modelling of the obstacles

and the robot and, finally, the assumptions for this scenario are presented in the sequel,



thus enabling a more mathematical formulation of the above problem.

2.1 Mobile Robot Dynamic Modelling

The assumptions made for the dynamic modelling of the mobile robot are:

• The rotation velocity and steering angle of all the wheels satisfy the rolling compati-

bility conditions [AM89], thus avoiding slipping .

• The translational velocity v(t) - _(t) at any point s of a trajectory r(s) is bounded

by vm_::(z) so that the inertial forces do not saturate the available friction between

the wheels and the floor, and therefore skidding is avoided. An approach to finding

v,,_(s) is presented in [K.K90].

• The rotational kinematic energy of the rotating wheels is not considered. This is a

realistic assumption since the wheels usually have considerably less mass than the

whole robot.

Consider the dynamic energy of the moving robot:

K= 1 .i._2+ I _2- (l/
2 2

where I is the moment of inertia of the robot, and m is its mass. The first term corresponds

to the rotational and the second to the translational motion.

From the description r(s) = [x(s) y(s) 0(s)] T of the trajectory, the curvature

Xl.yll_ yt.Xlt
= + = (2)

+

can be found. Obviously,

= (3)

and therefore (1) becomes

1 1 _2
K(s,_) = -_ . I. f2(s)._2 + _.rn. (4)

The Lagrangian of the mechanical system of the robot is

L(s,_) = If - P = K (5)

and therefore the Euler-Lagrange equations, assuming that nonconservative forces such us

friction are not present, are:
00L OL

=u (6)
dt O_ Os

where -U2 < u < Ut is the driving force of the robot. U1 is the maximum thrust force that

the actuators can give, while -U2 is the maximum deccelation that can be applied based

on the friction coefficient between the wheels of the robot and the floor.Using (4)

(m + f. f2(s)), g + I. f(s). f'(s). _2 _ u. (7)
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is obtained.

The second order dynamic model suggests the use of the phase plane, as an approporiate

tool because phase plane can both represent the constraints and provide visualization of

the state trajectory. To do that (7) is rewritten as

.(3) (s)

dv I. f(s)" f'(s) . v(s) + 1 . u(s) (9)
-_s (s) = m + I. f2(s) (m + I. f2(s)), v(s)

2.2 Dynamic - Kinematic Constraints

i) In order that (8) be well defined v(s) >_ e > 0 where e is a very small constant. Further-

more, the mobile robot is assumed to move with ideal rolling. Rolling without skidding is

achieved as shown in [K.K90] by bounding the velocity v(s). Thus

(10)

5) Collision avoidance is guaranteed if the distance [GJ85] between the mobile robot and

every object of the surrounding environment is greater than a safety positive constant d °,

i.e when

d(s,t) = min{ilz;- zjlI : z_ E C_(s),z i E Co(t)} >_ d ° Vs.t (11)
L,J

where

C_(s)= {x/xE3 3_ A_.R71(s).xgb,-A_.R71(s).T_(s), A, E_m×3,b_E,_"}, (12)

Co(t) = {y/y E ._3 _ Ao . Rol(t) . y < bo - Ao " R:l(t) • To(t), Ao E _t×3, bo E ,_l}, (13)

are convex polyhedra representing the convex hulls of the mobile robot and the mov-

ing obstacle respectively. (A_,b_) and (Ao, bo) are the parameters that define the convex

polyhedron description of the robot and the object respectively, with respect to their fixed

coordinate frame. R_,Ro,T_,To represent the rotation and translation of the frames of the

robot and the object with respect to the world frame. A computationally efficient approach

to estimate d(s,t) and predict the collision time tc under uncertain input from sensing

devices is presented elsewhere [KSg0]. The collision time is defined by

to= inf {t/d(t)=0) (14)
te[to30+Th]

where to is the present time, and Th is the time horizon of interest.
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2.3 Assumptions

In order to minimize the on-line information processing, certain assumptions have to be

made:

i) A nominal plan is available from off-line motion planning and is described by:

• r(S) -- [p_:(S) pV(S) 0(_)] T, describing tl_e shape of the cartesian trajectory and the

orientation angle along it.

• s,,(t) describing the motion with respect to time along the trajectory r(s), where

0 < t < T, s_(0) = s0 and s_(T) -- s/.(Soe fig.2)

• v,n,,z(s) giving at point s the maximum velocity in order to satisfy the non-skidding

and stability constraints. Additionally feasibility in terms of control input u, when

following Vm_.(s) has to be guaranteed. (see fig.2)

• t,_in(s) = fo _ " ,la giving the minimum time from (So = s,_(to),V,,_:(So)) tov,na._. {_' )

(3, Vmax(_)).

ii) Temporary Obstruction Assumption: The mobile robot moving along path r(s)

can be obstructed during only a bounded atlttmllt of time i.e the moving object is assumed

not to permanently stay on. or move parallel>" to r(s).

2.4 Performance Criterion

In this paper, the otfly impos_d p,rl'orm_nc,, ,:riterion is time consistency with respect to

the initial plan. This is expressed by minimizitlg

J = (t(.,.,)-T) 2 (15)

where t(s/) is the arrival time _t .__/.aad T is the time to reach s/, according to the nominal

plan.

2.5 Mathematical Problem Statement

Based on the previous discussion, the matholnatical statement of the problem of collision

avoidance of moving obstacles is now straight [brward. It is reminded that s is the trajectory

parametrizafion variable.

system

.r'(.,) = .4(z(., )) + B(z(s)). u(s) (16)

where (.)'= dd_, x(.s)= [t(._)v(s)] T. with ,,i.s. = _(s),

E ].-t(:r ) = o__--'S _t2×1
-I'./(,rt.f'(_} . L'(S)

m+l.j21s]

(17)
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and

initial-final conditions

input constraints

state constraints

collision avoidance constrai_ts

performance criterion

0 ] _R2×1 (18)B(z) = l 1 E
rn+l.j_(_) " v-_

x(_o) = [0 Vo] T .c(sI) = [free vl] T (19)

- U2 5 u(s) 5 U_ (20)

_<v(._)< v,._(s) (21)

ao - ,t( .,. t) < o (22)

J = (t(._I) - T) _ (23)

Minimizing (23) subject to eqs( 16)-(22) Itsing an Optimal Control Strategy is a non-

trivial task. Is is also a time consuming proce.,s when real time computing is required.

In this paper, a Minimum Interference Strategy (MIS) is proposed for providing fast

but in general suboptimal solutions to the _d_ove problem. The suboptimality results from

the fact that eq. (22) is approximated _ml not treated directly. The development of a

computationally efficient process for an optimM solution of eq. (23), or other criteria, is

the subject of on-going research. Ilowever. since any optimal control solution is going to be

obtained numerically, using some i_erative process, the solution provided by MIS may serve

as a first guess to speed up the numerical computations.

3 Minimum Interference Strategy

In the sequel some definitions. [emmas and theorems that establish the proposed Minimum

Interference Strategy are presented. The relev_ult proofs are presented in Appendix A.

Lemma 3.1: The tbllowing sets:

z) = {(.,.t)/a(s,t) < o} (24)

D, = {t/ :_.__ (_. t) E D}

D_ = {s/ _t _ (s,t) E D}

are non-empty and _dl of them are compact.

The following theorem mathetuatically estabhshes the proposed strategy.

Theorem 3.2: The collision .voida.,:e ,'o,tditions are

(25)

(26)

•_qt) > .s., = max D_ Vt > tl = min Dt (27)

(i



s(t) _< sl = minD, Vt _< t2 - maxDt (28)

Conditions (27) and (28) provide two collision avoidance options. The first condi-

tion provides avoidance by acceleration and called Accelerating Minimum Interfer-

ence Strategy (AMIS), while the second condition provides avoidance by decceleration

and called Deccelerating Minimum Interference Strategy (DMIS). Their implemen-

tation must be such that the overall time t(sl) is as close as possible to T, the total time

according to the nominal plan.

Furthermore (27) and (28) are quite general but their use, in the general case, becomes

problematic because of the difficulties in calculating sl, s2, tl, t2. Difficulties arise from the

nonlinear, in general, form of r(s) and the nondifferentiable nature of d(s, t). If

_f, +/fo (29)
P=-2

where _f,, _foare the diameters of the convex poiyhedra C_, Co , then "tubes" with radii p

can be set around curves rp(s) = [p_(s) py(s)] and o(t) = [o::(t) o_(t)] describing tile actual

and predicted cartesian translational trajectories of the robot and the moving obstacle

respectively. From the intersections of these "tubes" with r(s) and o(t), safe estimates of

Sl, s_, tl, t2 can be derived. This is demonstrated on fig. 3.

Definition 3.3 : Consider the functional t : R x R x C[so, s/] -- _ defined by

_s2 1t(s,,s:,v) = , v(s'--")"ds (30)

representing the time needed to go from point sl to point s2 moving following a velocity

function function v(s).

Lemma 3.4.a (b) : The minimum (maximum) velocity 0i 0ivmm (v,_) that the mobile

robot system eqs.( 16- 21) can achieve at point si, starting from [so vo]T where si > .% and

moving exactly tj seconds (assuming that tj is enough time for this motion), is obtained

following a velocity trajectory vc(s) composed of:

• an arc with input uc(s) = U1

• an arc with t,_(s) = vm_::(a)

• an arc with input u_(s) = -U:

(= -U2),

(= v,, in(s) = e), and

(= U1)

Any one of the above arcs may not exist.

Lemma 3.5.a(b) : The ma_mum (minimum) velocity v_: if(v,_i,) with which the

mobile robot system eqs.( 16- 21) can start from point s; leading to [s/ v.¢]T (si < .s/) and

moving exactly T - tj seconds (assuming that T - tj is enough time for this motion), is

obtained following a velocity trajectory v_(s) composed of:

• an arc with input u_(s) = -U= (= U1),

• an arc with v_(s) = v._,n(s) (= vm_:_(s)), and



• anarc with input 'uc(s) = U1 (= -U2)

Any one of the above arcs may not e_st.

Lemma 3.6 : Given a time tj, the corresponding velocities defined in lemmas 3.4.(a,b),

3.5.(a,b) are monotonous functions of tj and

i) oi .v,,,,_(t:) is decreasing function of tj

ii) oi .v,,,.x(tj) is decreasing function of tj

iii) iiv,,,i,_(tj) is increasing function of t/

iv) vi_l_z(tj) is increasing function of t3 .

MIS is implemeted in two phases. In phase [. the space of feasible velocities at si i = 1,2

is determined, and a strategy (AMIS or DMIS) is chosen. In phase II, the actual trajectory

is specified.

3.1 MIS Phase I : Feasibility Study and Strategy Selection

Phase I of MIS is actually a tbasibility test. P:trameters sl, s2, ta, t2 that specify the "dan-

gerous segment-time'" area are inputs to this phase. During this phase, decision is made

upon which of the two strategies..-kMIS or DX,IIS, is going to be selected. Depending on

the selected strategy the following parameters are determined and provided to Phase II of

MIS, which is the trajectory planning stage.

* DMIS : (sl, t.,. tf. Ureaxl = mint c,°2_z, u,,;,,_.l'), v,ninl = ma.x(v_i,_, v_,n))l]

• AMIS :(s2,tl. ty. ,,12,_. = rail,( L,,,,_.,°"-c-':,,_,,.,_Yere,,,= ma-x(V°m_,, Win))2/

The above parameters are iteratively found. The issue of convergence of these iterative

schemes is of major significance in this work. ,nd is covered in section 4.

ALGORITHM: MIS Phase I

STEP I: Feasiblitv of Decceleratin_ MIS: Based on Lemma 3.4.b, the maximum time
m

tma z from (.So, t'o) to ._, is tbund.

if 01tmax < t2

then DMIS-NOT-I:'EASIBI,]'::=I;gotoSTEP 2

else goto STEP 3.

STEP 2: Feasiblitv of AcceleraJing MIS:

1) The ininimum tin, . t°,,{i, ['1Ollt (.S0,'V0) to s2 is determined.

2) Based on Lemln,t 3.-t.a v°,_,,, is tbund.

3) Integrate backwards (9) with linal conditions (sl,vl) and u(s) = -U2 until

s = _2. Record ;'(_.,,).

02 v(.s_ ) < _,o-'.if If t,,.,_ > tl or . ,,,,n

then AhlIS-NOT-I"EASI]_I.E:= t



STEP 3:

STEP 4:

Strategy Selection:

if

then

else if

then

else

AMIS-NOT-FEASIBLE=I and DMIS-NOT-FEASIBLE=I

"Collision Unavoidable"

DMIS-NOT-FEASIBLE:=0

goto STEP 4

goto STEP 5

The Decceleratin_ MIS

O1 01
= v,nax ] of feasible veloc-• Based on Lemmas 3.4.a,b, an interval [ol [vmin,

ities at point sl is obtained. Every v °1 E /m at sl, can be acttieved in

exactly time t2.

[ 1I ] of feasible veloc-• Based on Lemma 3.5.a(b) an interval I t! = vmi,;, v_]_::

ities at point st is obtained. Therefore vI at s I can be achieved starting

from every v 11 E 111 at st, within exactly time T - t2.

1 1 __ /O1• Interval I1 _. [?)min, ?')max] n 11I is found. If:

- I t ¢ 0: Then one feasibte arc from (So, Vo) to (st, v(st) e It), and one

from (st, v(.st) E I t) to (sy, vl) can be easily constructed. Obviously

the total time t f = TD,_tlS = T; goto PHASE II

-- .,01_ml,_ > v_f_x then:

, Increase time t2 until +01 = v_.(Based on Lemma 3.5)Omin

* set I t = otYrnin "- ulftx .

, Obviously the total time t] = TDMI$ ---- T; goto PHASE II

.,ol < 1I-- ¢ max Ornin then:

* set 11 = v0mlax

* construct the maximum time arc from (so, vo) to (_1, v,°_).

, Record the total time TDMtS > T.

, Goto 2 to check feasibility of the Accelerating MIS;

if AMIS-NOT-FEASIBLE - 1, goto PHASE II

else goto STEP 5.
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STEP 5: The Decceleratin$ MIS

STEP 6:

O2 O2• Based on Lemmas 3.4.a,b, an interval/o2 = [v,n,n ' vrnax] of feasible veloc-

ities at point s2 is obtained. Every v°2 E /°2 at s2, can be achieved in

exactly time q.

• Based on Lemma 3.5.a(b) an interval/_f = [Vmin,2I V_x] of feasible veloc-

ities at point `s2 is obtained. Therefore the final velocity v/ at s/ can be
L J

achieved starting from every v 2] E I _/ at `s2, within exactly time T - tl.

-- 2• Interval I'2 [v,nin , v_:] = I °2 N I "2] is found. If:

- 12 ¢ 0: Then one feasible arc from (.So, v0) to (`s2, v(s2) e /'2), and one

from (`s2, v(`s2) E/2) to (`sl, v/) can be easily constructed. Obviously

the total time t/= TAMIS = T; goto PHASE II

2/ then:-- VOm2ax _ Vmi n

* Decrease time tl until v_ x 2/ (Based on Lemma 3.6)?)rain"

* set/_ v_ 2/= _ Vrain •

, Obviously the total time t/ = TAMZS = T; goto PHASE II

02 v_]_ then:-- Vrain

* set 12 = o2Vrain

* construct the maximum time arc from (s2, o2vrain ) to (s/. v/).

. Record the total time TAMIS < T.

Suboptimal Strategy Selection

if (TDMtS -- T) 2 _< (TAMIS -- T) 2

then choose DMIS; t/ = TDM1S;goto PHASE II

else choose AMIS; t/ = TAMIS;goto PHASE II

3.2 MIS Phase II : Trajectory Planning

Assuming that one of DMIS, AMIS has been selected in Phase I, the determination of a ve-

locity function v(`s) along r(`s) that satisfies the input constraints (20) and the specifications

(`si, tj, t/, i ivra_, vrai,_) provided by the applied strategy is the remaining issue.

Any one of the two possible strategies determines a point `si E [.s0,`s/] (`sl or `s2), an
interval I i i= [vra,_, v,,_]i C [_, vrasx(`si)] of feasible velocities at sl, the final time t/ (=

TAMIS or TDMIS), and a time instant tj E [to, t/] (= tl or t2) at which the robot must be

at si. Thus the problem can be divided in two subproblems with identical structure:

a) Starting from (`so, vo) find v(`s) E C[`s0, `si], corresponding to a feasible control input u(s),

10



leadingto (si, v(si)), where v(si) E P, and satisfying f_ -_ds = tj.

b) Staxting from (si, v(si)) find v(s) q C[si, s f], corresponding to a feasible control input

u(s), leading to (sl, vf) and satisfying f_' --_ds = t S - tj.

At this point, two issues have to be clarified. First, solutions to both subproblems (a)

& (b) are guaranteed to exist from the feasibility study of Phase I. Second, Phase I only

provides the segment I i where v(sO has to belong.

Accelerating MIS

The proposed structure of v(s) s E [s0, sy] is (fig.4) :

• arc I with velocity v(s) = vn(s) s e [s0, sc]

• arc II with input u(s)= U1 sE[sc, s,]

• arc III with velocity v(s) = vmaz(s) s E [s,,sb]

* arc IV with input u(s) = -U2 s • [s,,s2]

• arc V with input u(s) = -U2 s • [s2,sd]

• arc VI with velocity v(s) = v,ni,_(s) = e s _. [sd, s,_]

• arc VII with input u(s)= UI sE[s,,,s,]

• arc VIII with velocity v(s) = v,_(s) s E [s_, sS]

This gereral structure of v(s) is going to be iteratively determined. In its final form some

of the arcs may not appear.

Velocity v(s2) is selected as big as possible so that sc is moved as close as possible to sl,

so that the "perturbation" is directed towards the future, when more sensing information

is available. Variables so, sv, sb, Sd, Su, s, are not independent but they are related because

of ff_ 1t(so, s_,v)= o v(s----_'ds = tl (31)

f s! It(s2, s S, v) = v(s'---S"ds = tf - tl 32)
2

where t(.,., .) defined in (30). Therefore for a fixed v(s_) only two (e.g s,,s,) of those are

independent. Those parameters are numerically obtained by the following algorithm.

11
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\

STEP 1:

STEP 2:

ALGORITHM: Phase II AMIS
Determine iteration parameter:

Set v(s2) ¢2 min( ,02 o_/x)"- _max = ?_rnaa'"

if tCso, s2,v) >__tl

then goto STEP 2 (Find ,,!s) s E [so,S2])

else goto STEP 3 (Find v(s) s E [so, S2])

Iterate oll ._,.: Define E(s_.) = _t . (t(sv) - tl) 2

STEP 3:

.S v :-" ,.s.2

while (E(_,.) > e,j, _0 : small )
,J.__E

Iterate on v., = v{._.,): Define E(v2) = ½ • (t(v_)- t2) _

STEP 4:

while (E(v2) > et,, -o " sinai1 )
,IE

Find _,(_1._E [_-._S]: D_in_ t:.(s_] = (t(s_) - (t s - t_))2
s2+s_

3r -- 2

while(E(.s,.) >eu, -o:sn,lll)

The numerical implementaliou issues of the, _,bove iterative schemes are discussed in the

next section.

Deccelerating MIS

The proposed structure of c(._) .-_E [so. _'/i is I fig.5) :

• arc I with velocity v(.s) = c_(.._) _ E i.'o..'c]

• arc II with input tt(_) = -U-2 s E [._:..:,.]

• arc III with velocity _,(.s) = c,,,i,(_) = , _ E [sv, sb]

• arc IV with input tL(s) = U1 _ E [_b._'l]

• arc V with input u(*) = Ut ._ E [_'l,._,_]

• arc VI with velocity v(s) = c,,,,A_) ,, E [sd,s_]

• arc VlI with input u(._)=-/',. ._.E _.-r'_,.--_]

• arc VIII with velocity _,(._) = _',,(._) ., _ [.._,,sf]

12



The gereral structure of v(s) is going to be iteratively determined. In its final form some of

the arcs may not appear.

We propose that v(sl) is as small as possible so that sc is moved as close as possible to 81,

so that the "perturbation" is directed towards the future, where more sensing information

is available.

As in AMIS, variables so, s_, Sb, sa, s_, sr are not independent but they are related from

_sl 1t(so, sl,v) = o v(s-'-_'ds = t2 (33)

t(sl,sl,v) = _ sl 1, v(s----).ds = tf - t2 (34)

Parameters s., s, are numerically obtained by the following algorithm.

Phase II: DMIS

STEP 1: Determine iteration parameter:

Set .(sl ) = ._,_ = max(._,_, v...)lf

if t(so, sl, v) <_ t2

then goto STEP 2 (Find v(s) s E [So, Sz])

else goto STEP 3 (Find v(s) s E [So, sl])

STEP 2: Iterate on s_: Define E(s.) = (t(s.) - t2) 2

3 v :----- S 1

while (E(s.) > So So :small )
dE
_s,,.

s . := s . - 7" ._v_ ,

STEP 3: Iterate on vl = v(sl): Define E(vi) = (t(vi) - t:) 2

D 1 -" .(81)

while (E(vi) > Eo _o : small )
dE

vi := p_ - "/- d-_PEE;

STEP 4: Find v(s)s e [so,s_]: Define E(s,) = (t(s_)- t2)2

-- 2

while (E(s_) > so _o : small )
dE

Sr := Sr -- 7 "_:?'rk-_,

The numerical implementation issues of the above iterative schemes are discussed in the

next section.

13



4 Numerical Implementation Issues

Three computational problems are encounteredinthe Minimum InterferenceStrategy.For-

tunately,they are wellposed and solvedwith fastnumerical techniques

i) Space of feasible velocitiesat si

In phase I of MIS, the followingfourproblems have to be solved:

l)Based on Lemma 3.4.afind 0iv,n_z = max_o){v(si)/v(s) E C[s0, si] 9 t(so, si, v) = tj).

2)Based on Lemma 3.4.b find 0i

3)Based on Lemma 3.5.a find v_ x = ma.'%(_){v(si)/v(s) e C[si, s]] _ t(si, s], v) = T- tj).
il

4)Based on Lemma 3.5.5 find v,_i, _ -'- min_,(s){v(si)/v(s) E C[si, sy] _ t(si, sf, v) = T- tj),

where t(.,., .) was defined in (30).

The use of lemmas 3.4, 3.5 enables the statement of the above problems as simple

unidimensional optimization problems. For each of those problems a function

1 )2
Ek = :_" (tk(vk) - Tk (35)

_'.0i .0i _i] .il 1 {tj, tj, T t j,T tj} where k 1,2.3.4isis defined.v/¢ G turn,z, Urnirt, Urnaz:,umin.f , Tk E - - =

the problem index. Every tlc(vk) is the time elapsed following a velocity arc with structure

defined by the lemma corresponding to the problem. The sought solutions comes from

minimizing (35). This is done using a Newton Iteration

36)
v_'+1 = C - 7"

dye,

where

dE.__k._ (tk(v_) -- Tk) " dt_(v_.) 37)
dvk dvk

d2 Ek
dtk( v'_) )2 + ( tk( v'_ ) - T_,) . d2t_:( v'_ ) 38)

dv_ = ( dvk dv'_

This numerical scheme converges geometrically to the optimal solution.
dtk(v_') d2t_(v_)

An analytic form for _"--d';_-k' _ can be obtained by using the Leibniz's differen-

tiation law for integrals. The analytic expressions of the above derivatives are given in

appendix B.

ii) Evaluation of the parameters of the velocity arcs

In phase II of MIS. the following problems have to be solved:

1) In Step 2 of both AMIS and DMIS, a newton iteration is used to find sv. To do so.

dE d2_: where E(s,) = ½. (t(s_) - tj) 2, must be known. Thus,

dE dr(s,,)
ds--'-_= (t(s.)- tj). ds. (39)

d2E dt(s_))2 d2t(s_)
ds-"-7= ( d_ + (t(_) - tj). d_ (40)

14



Analytic expressionsfor _ _ are given in APPENDIX C-I.From the derivatives
• 8_ ' --v v

presented there,the fact that some additionalassumptions have to be set so that the

iterativescheme convergesbecomes obvious.The assumptions are:

• vm_(s) - v,_(s) > e_ > O, vn(s) - vmm(s) > e_ > 0 where E_,very small constant.

• vmaz(s) e C[so, Sl] (continuously differentiable).

• _(_)= -r. f(_). _. vLoA_)- (m + I. f%))v_(_)_ < u1 _ e [s0,_/]

2) In Step 3 of both AMIS and DMIS, a newton iteration is used to find vi. To do that,

dE d2E where E(vi) = 1Z;7' _ 3 " (t(vi) - tj) 2, must be known. Thus,

dE dt(vi)
d_--_= (t(_) - tj). d_

d2E (dt(vi) )2
dv---T=" dvi + (t(vi) - tj). --

d2t( v_)

dv_

(41)

(42)

dt(vi) d_t(vl)

Analytic expressions for --d'67_,_ are given in APPENDIX C-2.

3) In Step 3 of both AMIS and DMIS, a newton iteration is used to find s_. This has the

same structure as in case (ii-1) (search for s_), and thus it is omitted.

iii) Feasible space update

An on-line scheme has to include an efficient update algorithm, to update the plan as new

sensory information is recorded. Changes of the predicted motion of the moving obstacle

[KS90] result in changes of sl, s2, h, t2 defined in Thm. 3.2. According to Lemmas 3.4.3.5
,0i oithe new set s_, s_, t_, t_ creates changes of everv, vk e { v,.ni_, vma=, v_in, v_az} i = 1,2.

A computationaUy efficient way to update v_(si, tj) is done by expanding it in Taylor

series, and then iterate in the way described in case (i). The Taylor series is written as

08i Otj

Analytic expressions for _, _ are given in APPENDIX D.

All iterations described above converge geometrically to the actual solution if 7 is ap-

propriately selected. Relevant analysis can be found in [BT89].

5 Simulation Results - Discussion

The environment of fig.1 was considered for simulation. Instead of treating a simple case

of collision avoidance where the obtained trajectories have the form of fig.4,5, we preferred

to test the efficiency of the proposed method by statistical analysis. In order to do this,

500 events where considered. Each event, is the appearance of a moving object nearby

15
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the robot. The velocities of the objects were uniformly distributed between 10 - 30m/s 2.

The mobile robot had mass of 50kg, maximum thrust ll0N, maximum brakes force -10N,

while the maximum velocity of the mobile robot was set to 8m/s for safety reasons. The

random character of the events made the robot encounter extremely adverse situtations.

For example, there were events in which,very speedy objects were suddenly "appearing"

very close to the robot. This is, of course, not realistic.

The motion task time of the robot was initially T = 9.02 sec. From the 500 events,

390 could potentially create collisions. Only DMIS was simulated and gave collision free

plans in 375 of them (96%).More interestingly, for those 375 cases that a collision free plan

was succesfuUy determined, the distribution of the final time t/ (fig. 6) showed that it was
close to T.

On going research has as a subject the development of real time optimal control schemes.

Furthermore other possible criteria will be considered. FinaLly the proposed approach of

moving along the same path, could be considered as too restrictive. A strategy that could

probably deviate from this path should incorporate the nonholonomic constraints of the

rolling motion.

APPENDIX A

I)Proof of Lemma 3.1: The proof is straightforward if the following facts are considered:

1) From ( 11)-(13) the fact that distance function d(s, t) is a function of the rotation and

translation matrices (R_(s), T_(s), Ro(t), To(t)), (i.e d(s, t) = d(R_(s), T_(s), Ro(t), To(t)))

becomes evident. In [G J85] the distance functions were found to be continuous with re-

spect to its arguments (R_,T_,Ro, To). But R_(s),T_(s) and Ro(t),To(t) are continuous

functions of their arguments s, t. Therefore d(s. t) is continuous with respect to (s.t).

2) A pair (So = s,_(t0), to) e_sts such that d(s0, to) - d o > 0 (meaning that prediction takes

place before collision!).

3) The point (s_, to) is finite and therefore only a bounded domain of d(s, t) is considered

here.Additionally, the definition of D shows that D C 32, Dr, Ds C _ are all ctosed sets,

and therefore compact.

4) A pair (so, to) exists such that d(s_,tc) = 0 and therefore d(s¢,t_) - do < 0 ( tc is

determined by the Collision prediction strategy and given by (14), while sc = s,,(t_) ).

Continuity guarantees that D, Dr, Ds are nonempty. |

II)Proofof Lemma 3.2: The compactness of D, Dt, Ds guarantees the existence of the

above minima and maxima. Obviously, the following relations are true.

s( t) E D_ _ t _ Dt (44)

and

t E Dt =_ s(t) ¢_ D,. (45)
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Ifthe factthat _(t)> 0 isconsidered,(27) and (28) are deduced.|

HI)Proof of Lemma 3.4.a: Consider an arc vc(s) (see fig 7) such that

t(so, si, vc) = tj (46)

having the structure described above. Consider point sb, where the arc corresponding to

Uc(S) = -U2 starts. For any other arc v(s) 6 C[so, si] corresponding to an input u(s)

satisfying (20), and such that

t(s0, s_, v) = tj (47)

we have that

v(s) _<vc(s) vs _ Is0,s_]

because vc(s) is the maximum velocity arc starting from (so, v0). Therefore

t(so, sb, vc) < t( so, sb, v)

From ( 46, 47, 49)

is deduced.Assume that

From(49)

t(sb, s_, v) < t(sb, si, vc)

Equations ( 49- 52) suggest that there e_st segments Ik C

v_(s) Vs E Ik. Consider

st= sup{s_Ik}
k

then obviously

(4s)

(49)

(50)

(51)

(52)

[Sb, S,] such that v(_) >

(53)

_(sl) dye.< -y_-8(s_) = (54)

u(st) < u_(st) = -U2 (55)

The contradiction of (55) to (20) shows that assumption (51) is not valid, and therefore

0i
v,_i, = v_(si) <_ v(si) (56)

for all v(s) e C[so, si] corresponding to feasible controls u(s). I

The proof of lemmas 3.4.b, 3.5.a,b is similar to the above and omitted. The structure

of the trajectories corresponding to both (3.4.a,b) is demonstrated in fig. 8. while for those

in 3.5(a,b) in fig.9.

W) Proof of Lemma 3.6: The structure of the arcs, defined by lemmas 3.4.(a,b), 3.5.(a,b),

and leading to oi oi i!vmi n, Vmaz, Vmi n, vimlaz for a specific time tj, shows that these functions are
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1-1. Only (i) is proven here, since the others can be similarly proved• If 01v,,,,,(t_)= v(_d,
where v(8) is an arc constructed for tj according to lemma 3.4.a, is increased to a new

value v_(si), then the new arc u(s) (according to lemma 3.4.a) leading to it, is going to be

' v,_in(t3) = v(si), is decreasedeverywhere v'(s) >_ v(s). Thus from (30) tj <_ tj. Similarly, if 0i

to a new value v'(si), then the new arc v(s) (according to lemma 3.4.a) leading to it, is
!

going to be everywhere v"(s) <_ v(s). Thus from (30) tj >_ tj. QED |

APPENDIX B

The derivations of the following formulas is a tedious task. They are based on Leibniz's

Diferentiation law for integrals. To help the better understanding of the derivation process,

the relevant integrals and the corresponding figures are provided for every case. k typical

procedure to derive those is provided for a relevant case in appendix C-2.

k = 1 (fig.8, line:2) tj = f_ob -_ds + f_" -_Tfds

Otj (m + I. /2(_i))
- • (1 - v._,_______) < 0 (57)

Ov_= U1 .(sb)

CO2tj (m + I f2(si)) (m + I 2 oi 2• • f (si))(v,_==) - (m + I. f2(sb))v2(sd)

O(vO_=)_ - U1 va(sb) > 0 (58)

k = 2 (fig.8, line:l) tj = f_? -_8)ds + f_' ,-_ds

Otj (m+ I. f2(si)) v_in°i
oi - .(--- 1) < 0 (59)

OVmi n U1 V($b)

02tj (m+I.F(si)) (m+I.f2(sb))v2(sb)--(m+I.f2(si))(v_m) _
O(v_in) 2 -- U_. va(sb) > 0 (60)

k = 3 (fig.9, line:2) T- tj = f£_" -_ds + fs7 _-_Tfsds

O(T- tj) (m+ I.f2(sd) q
• i/ - -(1 - v_i-------_)< 0 (61)
Ov_= U: v(sd)

02(T- tj) _ (m + [. f2(si) )

0(_o_ )'2 U_
(m + [. f:(_))(v_£,=): - (m + _r./=(sd))v:(sd)

k = 4 (fig.9, line:l ) T - t i = f_i" -_)ds + f_? -_ds

> o (62)

O(T- tj) (m + I. f2(si)) i/
i/ -- • ( Vmin 1) < 0 (63)

OZ(T- tj) _ (m+ I. f2(si)) (m+[. f2(sd))V2(Sd) --(m+I. f2(si))(vi_Ii=)2

,,3(_,,)
> 0 (64)

18
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APPENDIX C

• For AMIS (fig.4) t(s_)

dt _

d2t _

- v(,v)= v_._(`sv)
dt

* _;';

1)By applying Leibniz's Differentiation law for integrals, analytic expressions for _as_ , _aats,

are obtained.To help the better understanding of the derivation process, the relevant inte-

grals and the corresponding figures are provided for every case.A typical procedure to derive

those is provided in case 2 of this appendix.

As it can be determined from the following derivatives, the additional assumptions for

convergence of section (4-ii) are necessary, so that local minima do not ernst.

(`s. = _b)

• ( I u_+u2 I u_;j _+_.:,(,_)- girj_+_.'_(,.))

__ U -u . 1 U 1-u 1 Ovmaz(sv) "1,, .

where u(s) = -I. f(s). _°l(s) . v2(`s) _ (m + I. f2(s))v(_)_

• For DMIS (fig.5) t(s,)= f;"o _._G-7ds + f;:_ -_d`s + f;_: ;_;:ds

dt
u( s_ )

1_..!_ - U_ +U, 1 U
;rC;;Tm+l.')_(so))* _:' = -_+-_?(_(_)_ ._+_.:_C_)-

- v(s_)= vm_As_)

dt Ul+I'f(sv)'_ . ( 1 1* _- u_ ,,(_) _-777,,)

I ,,o/(,,),2 .... o2/f,_) U_+l.f(s_)._
d:_t -- "ITS) "_l('t') o_ . ( 1 1_ .)__ 1 Ul-u

• • • , ...... dt t', d2t v

2) By applying Letbmz s Dtfferentmtmn law for mtegrais, analyUc expressmns for _,
are obtained. In order to demonstrate the derivation process the case of AMIS is ana'lytical_y

presented.

Consider fig.10. The arc has a first segment where v(`s) = v_(s) s 6 [.so, s_], and a second

segment resulting from an input u(s) = U1 s 6 [s¢,`sl]. The overall time is

o _(`s) + o _

Assuming that vl = v(sl) is an indepentent variable, then by Leibniz's Differentiation law

for integrals,

d__.__t= _--l_ 1 . dv( `s)d s
dvl J,_ v2( s ) dv_
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H owever
m+I.f2(sl) _, ,
m+ f.f2(s) v _sl)+ m 2-fF)_(s)(s - sl) =_

dv(_) _ ,_ + :. f2/_l) ,(_1)
dvl m+ I. f_(s) v(s)

Giving,

ff i m + _r.f(_:):.(I _(_2))dt -(m + I. f2(sl)) • vfsl) • ds =
dr--7= o _ vl v(_c)

assuming small variation of f(s) s E [so, sl]. The calculation of the second derivative is

straightforward.

Following the same approach- for DMIS. the following results were obtained:

• For AMIS

dt _ m+1":is:) * . (1- _(s2)a
a-_ u1 ;577 j
d2t __ m+I'f(s_) 2 . (m+l'f2(s2))v2(s2)-(m+l'.f2(s_))v2(s_)

dv-_2-- UI (rn-+I'f2(se))2t'J(so)

• For DMIS

_ dt -- m+l.f(sl)2

d2t __ m+l'J(sl) 2 , (m+l'f2(Sl))Ve(Sl)-(m+I'f2(sc))v2(sc)

-- _-- U2 (m+l'fZ(sc))2va(so)

APPENDIX D

By applving Leibniz's Differentiation law for integrals, analytic expressions for _.

Oi Oiul: E {vmm, t,_i,_ , v_=} i = 1 o are obtained:Urtt a,_ _ •
;Jtj

OvO_ax i UI • Vmax) (65)- I. f(si) f'(si)" o,
0si - (m + I./2(si)) "(v_- V(Sb)

Ov_= _ I i Us" v( sa)
Osi (m + I f2(si)) il " ( -- - -- - U2- I. f(si)" f'(si). (v_) 2) (66)• _o_ _o_ - _(_)

Ov_, 1 gl" o(sb)
Otj - (m + I. f_fsi))'(v_---_ --v--_b) ) (6T)

Ov_== _ I . ( U: . v( sa)

i I" f(sl) f'(si) oi• .Omi n)

(m + :.f_(s_))

if 2
1 + [. f(s,)" f'(si)" (vmin))

(m + I. f2(si))

(m + I" f2(si))

(68)

0, 0"2 (69)
Ov..,_ _ "(v(s_) o,

08 i -- Vmi n

if Vl (70)Ov.u. _ . (
i/

Osi v( sd) - v..,_
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